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is rather surprising. While the basic equation, in 
its interpretation of potential energy, is not strictly 
applicable to water and methanol, these substances 
do not show any marked departure from the other 
substances. 

The Entropy.—Since (dS/dT)v = Cv/T, it is 
possible to obtain a formal expression for the en­
tropy of a liquid. The integration of eq. 18 yields 

s-s,+-vS(l?)vdT+*v>n) (l9) 

Here S0 is the entropy due to the translational, 
vibrational and rotational modes of motion in the 
ideal gas but does not contain any term involving 
the concentration. The term s{V,n) is the inte­
gration constant and is a function of the volume 
and the number of moles. Throughout this paper 
the partition function for the liquid has been con­
sidered to be the product of independent partition 
functions for translational, vibrational, and rota­
tional motion, and for the potential energy. The 

The Hildebrand-Scatchard equation8'4 has at­
tained great prominence for the estimation of the 
properties of solutions from those of the pure com­
ponents, but it does have a few outstanding diffi­
culties. The entropy of mixing at constant volume 
must be assumed to be that of an ideal solution of 
the same concentration or use must be made of the 
Flory-Huggins theory expressing the entropy in 
terms of the volume fraction rather than the mole 
fraction. Also, the energy of mixing at constant 
volume is usually much smaller than the observed 
value. Great progress has been made in the theo­
retical treatment of solutions by Guggenheim,6 

Kirkwood,6 Prigogine7 and many others. Since a 
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last two terms of eq. 19 then result from the parti­
tion function for the potential energy. Following 
the suggestion of Eyring and Hirschfelder29 for this 
partition function, the integration constant may be 
written as —R ln(w/°U), so that 

S-* + -bfl&VT-R** (20) 

Here V is a volume which might be called a free 
volume defined by this equation. 

Equation 20 can only be considered as a formal, 
semi-empirical equation at the present time and the 
same information would be required for further 
study as for the energy. Obviously, it means that 
the coefficients of the separate terms of eq. 12 or 17 
are functions of the temperature. It does afford 
an opportunity, however, of estimating the entropy 
of mixing for solutions as will be shown in the fol­
lowing paper. 

(29) H. Eyring and J. Hirschfelder, / . Phys. Chem., 41, 249 (1937). 
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complete, theoretical treatment of the problem is 
so difficult, a method of estimating the properties 
of solutions from those of the pure components is 
still important. This paper presents such a 
method, very similar to that of Hildebrand and 
Scatchard, but which appears to be a considerable 
improvement. The estimates of the energy of mix­
ing at constant volume and the heat of mixing at 
constant pressure are in closer agreement with the 
observed values. An estimate of the entropy of 
mixing both at constant volume and at constant 
pressure is obtained, but with only fair agreement 
with the observed values. The free energies of 
mixing at constant pressure are in rather surprising 
agreement with the observed values for the systems 
studied. The method is strictly applicable only 
to non-polar liquids. 

The Energy of Mixing.—As in the preceding 
paper,8 the energy of n moles of a pure liquid at a 
given volume and temperature may be expressed as 

E,o = nA; + ^f (1) 

(8) S. K. Worid, O. Satiilns and S. Weissman, T H I S JOURNAL, 79, 
1777 (1957). 
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Expressions for the change of the energy and of the entropy on mixing have been developed by a method similar to tha t 
of Hildebrand and Scatchard. In this development the interaction parameter a, defined by the equation E — Eo + (a/V), 
is taken to be a function of the volume and the temperature. The volume is taken as one of the independent variables 
rather than the pressure, thereby permitting calculations for any chosen change of state, the two most important cases 
being mixing at constant volume and mixing at constant pressure. It is necessary to assume that the a's are independent of 
the composition and that aa is determinable from an and 022- The geometrical mean is used in this paper. Other methods 
are suggested, but they require more information than is available at the present time. Calculations have been made for the 
three binary systems composed of benzene, carbon tetrachloride and cyclohexane. The calculations for the energy of mixing 
show improvement over the Hildebrand-Scatchard equation, although the agreement with the observed values is still not 
good. Except for the benzene-carbon tetrachloride system, the excess entropy of mixing is positive but smaller than the ob­
served values. The agreement of the excess free energy, while not exact, is surprisingly good because of a cancellation of 
errors. 
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where E& is the molar energy of the substance in 
the ideal gas state at the same temperature, F 0 is 
the volume of m moles of liquid and ai' is a func­
tion of the molar volume and temperature and is 
evaluated at the specified volume and temperature. 
Similarly, for a binary solution at a given volume 
and temperature the energy may be expressed as 
E = HiEn + H2E02 + (» i 2 au + 2»i«2<ii2 + H2

2Ii12)/V 

(2) 
where an, a22 and an are functions of the molar 
volume and the composition of the solution and of 
the temperature. I t is necessary to distinguish 
the a's for the pure liquid from those of the solution 
by means of a prime, because the volumes of the 
solution and of the pure components are different. 
I t must be emphasized here that the volume is being 
taken as the independent variable, rather than the 
pressure, in addition to the temperature and num­
ber of moles of each component. 

The change of energy on mixing n\ moles of the 
first component at a volume Fi0 and W2 moles of 
the second component at a volume F20 at a given 
temperature to form a solution at the same tem­
perature and a volume F is then 

„ M _ Wi2CiIi + 2nin2a\2 + H^a22 _ W1
2Ou' _ W2

2Q22' 

V V1" V2" 

(3) 
The change of energy for this change of state per 
mole of solution, after conversion to mole fractions 
and substitution of Xi(I — X2) for Xi2 and X2(I 
— Xi) for X2

2, is9 

APM = ^ S o K ^ ^ e ^ + *. ( ^ - $ ) + 

The extension of this equation to multi-component 
systems does not present any difficulties. 

Since the volume is considered as the independent 
variable, the molar volumes of the pure components 
and of the solution may have any values what­
soever. The two most important cases will be 
mixing at constant volume and mixing at constant 
pressure. The initial volume in either case will 
usually be the molar volume of each component at 
one atmosphere pressure at some specified tem­
perature. For mixing at constant volume the 
final volume will be _the additive volumes of the 
components so that F0 = XiFi0 + X2F2

0 while for 
mixing at constant pressure the final volume will 
be that of the solution at one atmosphere pressure 
at the samejnitial temperature. In this case, F 
= F0 + AVM where A?M is the change of the 
molar volume on mixing at constant pressure. The 

(9) Equation 4 may be transformed into several other expressions 
based on different concentration variables. Thus, according to this 
equation, the energy of mixing per unit volume is a function of the 
volume concentrations. In terms of volume fractions, defined as 
Zi = niVi/niVi + «2^2, the equation becomes 

\EM ( 2o , s »11 a22\ , / o n On' \ 

-V- - Zl22
 VF;F* ~ ft2 " F2V

 + Zl
 VFT2 " KVt) + 

( Oa _ O22 \ 

F2
2 F J F 2 V 

Certain processes of mixing may be imputed to the different equations, 
but the value of the energy of mixing for a given change of state must 
be independent of the process, 

difference between the change of enthalpy on mix­
ing at constant pressure and the change of energy 
on mixing at constant pressure is PAVM, which is 
usually negligible, and consequently eq. 4 will give 
the change of enthalpy on mixing at constant pres­
sure. When F0 + A VM is substituted for V in the 
last two terms of equation 4, the energy of mixing 
at constant pressure is given by 

AE> = X-f {2al2 - O11 - a22) + | (o„ - ^ ) + 

XJ (a22 - ^ ) - fe0"-' + 3^L) ^ (5) V V V2O J V F,o F2o J v 

This equation gives a somewhat complicated rela­
tion between the volume of mixing and the energy 
of mixing at constant pressure. It_can be sim­
plified for many systems in which A VM is small in 
comparison to F0, because then F, appearing in 
the denominator of each term, may be substituted 
by F°. 

The work of Prigogine and Mathot10 predicts, 
for mixtures of components whose volumes are not 
too different but whose energies of evaporation are 
quite different, that AFM may be negative while 
AEP

M is positive. Experimental evidence11-13 has 
shown this to be true. While eq. 5 does not predict 
the volume of mixing independently of the energy 
of mixing, it is not inconsistent with these predic­
tions. The numerical values of the a's are neg­
ative, and thus, for a solution of a given composi­
tion, A VM is proportional to the difference between 
AEP

M and the sum of the first three terms on the 
right-hand side of eq. 5. The first term will be 
positive unless strong attractive forces occur be­
tween the unlike molecules. Of the second and 
third terms, usually one will be positive and one 
negative, and if the volumes of the components are 
not too different, the sum of these terms may be 
quite small. In such a case the sign of AVM will 
depend primarily on the difference between AEP

M 

and the first term. There seems to be no a priori 
reason why this difference will always be positive. 
If the a's are assumed to be constant, independent 
of the volume and concentration, eq. 5 reduces to 

Ap M _ ^ j 7 I 0 Zi 0 ( 2JhI- _ -3i ai±-\ _ 
"p F VF1

0F2O (Fi0)2 (Fa0)*/ 
Zx1On , K2O22N AVM . . . 

\ F 7 + "Tl) T- (6) 

This equation is of the same form as that of Prigo­
gine and Mathot.10 Experience has shown that, 
for most binary mixtures of non-polar liquids, AEt

M 

and the first term of eq. 6 are both positive. Con­
sequently, the sign of AVM will depend on the dif­
ference between these two terms. 

The interaction parameters an, O22 and ai2 are 
dependent upon the properties of the solution and 
not those of the components. But in order to make 
further progress, the assumption that they are in­
dependent of the composition at a fixed volume 

(10) I. Prigogine and V. Mathot, / . Chem. Phys., 20, 49 (1952); 
see also Z. W. Salsburg and J. G. Kirkwood, ibid., 21, 2169 (1953). 

(11) V. Mathot and A. Desmyter, ibid., 21, 782 (1953). 
(12) R. Thacker and J. S. Rowlinson, ibid., 21, 2242 (1953). 
(13) P. Meares, ibid., 22, 955 (1954). 
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must be made.14 This means that neither the 
potential energy between two molecules nor the 
distribution function, averaged over the position 
and orientation of all the other molecules, can vary 
with the composition.15 Then each an may be ap­
proximated in terms of the properties of the pure 
component. From the form of the term an/V 
— an' /Vp in eq. 4, it would appear that each an 
should be determined at the molar volume of the 
solution while each an' is determined at the molar 
volume of each component in the initial state. 
Moreover, with this assumption, the relation 

y - p^ = £ i(P,7')-£i(Pi°,r) (7) 

is obtained by use of eq. 1. Such quantities then 
are the change of energy per mole of component on 
changing the volume from the molar volume of 
the pure component to the molar volume of the 
solution at the specified temperature. The proc­
ess of mixing may be thought of as expanding or 
compressing each component from its initial molar 
volume to the molar volume of the solution, and 
then mixing at identical volumes.16 

The Estimation of O12.—Assumptions concerning 
ais in addition to its independence of composition 
must be made in order to estimate the properties 
of a solution from those of the components. The 
usual assumption and the one used perforce in this 
paper is that «12 is the geometrical mean of an and 
«22- But each a represents the value of a rather 
complicated integral involving both repulsive and 
attractive forces and, therefore, this assumption 
can be very poor. If the liquids are relatively ex­
panded so that the effects of the repulsive forces 
are small or negligible, this assumption might be 
valid within our knowledge of the London disper­
sion forces. If the liquids are relatively com­
pressed, then this assumption may be invalid be­
cause of the effect of the repulsive forces. More­
over, when the molar volumes are very different, 
the geometrical mean can become imaginary. 
This can occur when, in the calculations which are 
described later, it is necessary to compress the com­
ponent having the larger volume to a volume ap­
proximately that of the other component. In such 
a case the a of the first component may become 
positive while that of the second component re­
mains negative.17 The geometrical mean is then 
imaginary. 

(14) The independent variables are the temperature, the volume 
and the number of moles of each component. The volume may be a 
function of the number of moles of each component and is such a func­
tion for mixing at constant pressure and at constant volume. Thus, 
the a's will be functions of the composition indirectly. The intent of 
this assumption is that the a's are dependent on the composition only 
through the volume and are independent of the composition otherwise. 

(15) This assumption is equivalent to those of Scatchard, Traits. 
Faraday Soc, 33,160 (1937), except that the assumption of the inde­
pendence of the a's on the temperature has been removed. 

(16) Other processes of mixing may be considered, but from the 
derivation of eq. 4 and our present knowledge, it would still appear 
that each an for the solution should be determined at the molar volume 
of the solution. 

(17) Such a situation arises in the calculations for the carbon 
tetrachloride-methanol and benzene—methanol systems. The molar 
volume of carbon tetrachloride at 25° and one atmosphere pressure is 
97 cc. while that of methanol is 40 cc. For dilute solutions of carbon 
tetrachloride in methanol, the calculations require a maximum hypo­
thetical compression for carbon tetrachloride from 97 to 40 cc. For 

The a's are actually functions of the volume and 
a better approximation for aw might be obtained 
by appropriate combination of the coefficients in 
equations which express this dependence such as 
eq. 12 or 17 of the preceding paper.8 The combina­
tion of constants for gas mixtures18 suggests that G 
might be combined linearly or by the Lorentz com­
bination and C2 quadratically. The combination of 
C3 cannot be predicted at the present time. Equa­
tion 13 of the previous paper8 or a similar equation 
affords an alternate method. With this equation, 
the combination of the three quantities (Ea — Em), 
Vma and V*, would need to be considered. Probably 
(Eo — Em) would combine quadratically while 
Vm° would combine linearly or with the Lorentz 
combination. For the present the combination 
of V* can only be guessed although based on the 
law of_ corresponding states, it might be assumed 
that V*/V°m is the same for each non-polar liquid. 
These suggestions cannot be tested with our present 
knowledge. 

Comparison with Other Equations.—Equation 4 
reduces to the Hildebrand-Scatchard equation in 
the form 

A / 7 r „ = X1V^Vl / 2a» au a»_\ 
V" Vl-YF2

0 (Ki0)2 (V2
0)2/ 

for mixing at constant volume with the two as­
sumptions that the a's are independent of com­
position and of the volume. Equation 8 reduces 
to the usual form of the Hildebrand-Scatchard 
equation with the additional assumption that an 
is the geometrical mean of an and a22. In order to 
obtain the change of energy on mixing at constant 
pressure, Simons and Dunlap19 have already used 
the method given here with the exception that they 
have considered the a's to be independent of the 
volume. Dunlap20 has extended this work by set­
ting E = E0 + k/ V. This relation removes the 
assumption of the constancy of the a's. But with 
constant n and k, (da,'5 F) r cannot change sign as 
suggested in the preceding paper.8 As used by 
Dunlap, this relation introduces one parameter 
into the equation for the change of enthalpy on 
mixing at constant pressure for each component. 
Reed21 has used the same development as Simons 
and Dunlap,19 but has avoided the assumption of 
the geometrical mean for au. He has evaluated 
this quantity by use of the (6 — n) law of inter-
molecular energies and the method of Hildebrand 
and Wood.4 Values of the energy of mixing calcu­
lated by this method agree much better with the 
observed values than those calculated by the 
method of Simons and Dunlap19 or the simple 
Hildebrand-Scatchard equation. 
such a compression a passes through a minimum at about 73 cc. and 
then rapidly increases to positive values on further compression. Ben­
zene exhibits similar behavior. The a for methanol remains negative, 
since in the calculations methanol is always expanded. Therefore, 
in such incidences, the geometric mean is imaginary. It is recog­
nized that the required change of volume is tremendous for a liquid 
and that the limited compressibility data cannot be extrapolated 
so far without possible serious error, nevertheless, a will for any liquid 
always become positive when the compression (real or hypothetical) 
is sufficiently large. 

(18) J. A. Beattie and W. H. Stockmayer, J. Chem. Phys., 10, 473 
(1942). 

(19) J. II. Simons and R. D. Dunlap, ibid., 18, 335 (1950). 
(20) R. D. Dunlap, ibid., 21, 1293 (1953). 
(21) T. M. Reed, ITT, J. Phys. Chem., 59, 425 (1955). 
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The Entropy of Mixing.—An expression for the 
entropy of one mole of a pure liquid has been given 
in the preceding paper8 and for n\ moles it becomes 

S«i 

where 

«i5io + y-0 bu - n,R In ~J W 

> • • - / 
1 ban 
TUT AT 

The entropy of a binary solution containing Wi 
and n% moles of the components is given by the 
equation2 2 

C C l C l n^ln + 2«l»2&12 + «22&22 

n\R In 
Ml 

n2R In ^2 (10) 

where V is a free volume of the solution which may 
be considered to be defined by this equation. 
This equation is obtained from eq. 2 by the method 
used in the preceding paper. The entropy of mix­
ing is then 

Wi2Jn + 2mnib\2 + n2*b22 n^b'n n2
2b'22 

AS" = V 

KiR In 
1Ui 

V1O 

— n2R In ( H ) 

V2" 
V2" 

and for one mole of solution, after substitution of 
.Ti(I — Xi) for Xi2 and Xj(I — Xi) for X22, is 

ASM = — (26 l : b22, + Xi 
(bu _ 6_'n\ 
\ V Vi0J + 

X2 (h5 - h'3) - X1R 
\V V2

0J l n T J -
X2R In -Vi (12) 

Since the b's are derived from the a's, all the as­
sumptions and discussions concerning the a's are 
applicable to the b's. The terms In TJi°/TJ and In-
TJ2

0/TJ need further discussion. Each TJ is a free 
volume defined by eq. 9 or 10 and, as such, is not 
susceptible to experimental determination. I t is 
not necessarily equal to the experimental volume. 
But in the interest of estimating the properties of 
the solution from those of the pure components, 
the assumption mus t be made tha t the ratios of 
the free volumes are equal to the ratios of the ac­
tual volumes. This assumption2 3 is probably 
more accurate than setting each free volume equal 
to the volume. When this assumption is made, 
these ratios become the volume fractions, defined 
as Xi Fi 0 / V, ra ther than x\ Vi0/ V°. The difference, 
however, is usually negligible. Thus, the last 
two terms of eq. 12 yield the Flory-Huggins rela­
tion. 

Calculations and Comparison with Experiment.— 
Calculations have been made for the change of 
energy and the excess entropy on mixing a t con­
s tant volume and a constant pressure for the three 
binary systems composed of benzene, carbon tetra­
chloride and cyclohexane. The initial s tate has 
always been chosen as the pure components a t 25° 
and one atmosphere pressure. The volumes of the 
solutions a t one atmosphere pressure have been 
determined from the volumes of mixing measured 
by Wood and his co-workers.2 4 - 2 6 According to 

(22) The terms mR In Wi and nsR In ni come from the presence of the 
product «i!w2! in the denominator of the partition function. 

(23) J. H. Hildebrand, / . Chem. Phys., 15, 225 (1947). 
(24) S. E. Wood and J. P. Brusie, T H I S JOURNAL, 65, 1891 (1943). 
(25) S. E. Wood and A. E. Austin, ibid., 67, 480 (1945). 
(26) S. E. Wood and J. A. Gray, III , ibid., 74, 3729 (1952). 

eq. 7, the last two terms of eq. 4 involve simply the 
change of the energy of the pure components for 
the designated change of volume. The Ta i t equa­
tion was used for these calculations. The values 
of an and «22, which were used in the first term of 
eq. 4, were obtained by means of eq. 7 in which 
a'/ V° is taken to be the negative of the energy of 
evaporation from the liquid s tate a t 25° and one 
atmosphere pressure to an ideal gas a t 25°. The 
data referred to in the preceding paper were used.8 

The geometrical mean of an and a22 was used per­
force to evaluate an. 

The excess entropy of mixing is defined as 
ASE = ASM + XiR In Xi + X2R In X2 (13) 

With substitution of eq. 12 in eq. 13 and of the 
ratio of volumes for the rat io of free volumes, 
ASE becomes 

A _ j B = xix2(2bu fe) 

/&22 _ b'22\ 

\ V F i 0 / 

F 
b/* 
Vi0J 

+ 
/611 6'nN 

* Kv ~ v7°) + 
F,0 Vi" 

X1R In -^- - X2R In -^-

According to eq. 9 

S1W1T) - 5V>( Fi", T) bf % 
RIn 

W 
TJ 

(14) 

(15) 

so t ha t the sum of the last four terms of eq. 14 is 
the change of entropy on expanding or compressing 
the pure compounds from their volumes in the 
initial s tate to the volume of the final state. Again 
the Tai t equation has been used for these calcula­
tions. The values of bn and 622 in the first term of 
eq. 14 were determined from 6'n and b'22 by means 
of eq. 15. Equat ion 9 was used to evaluate b'n 
and b 22- F rom eq. 9 

b'u/Vi<> = (5> -S10-R In TJi") (16) 

Here, it must be assumed tha t the free volume is 
equal to the volume itself. Then b'n/Vi0 is equal 
to the negative of the change of entropy on evap­
orating one mole of liquid a t the volume F;0 to an 
ideal gas of the same molar volume as the liquid 
a t the same temperature. Again the same da ta 
were used for these calculations as were used in the 
preceding paper. The value of 612 was taken as 
the geometrical mean of bu and 622. 

The results of these calculations are given in 
Table I for the benzene-carbon tetrachloride sys­
tem, Table I I for the benzene-cyclohexane system, 
and Table I I I for the cyclohexane-carbon tetra­
chloride system. The columns in each table are 
(1) the mole fraction, (2) the change of energy on 
mixing a t constant volume calculated by the 
Hildebrand-Scatchard equation, (3) the same 
quant i ty calculated by eq. 4, (4) the observed value 
of this quanti ty, (5) the change of energy on mixing 
a t constant pressure calculated by eq. 4, (6) the 
observed value of the change of enthalpy on mixing 
a t constant pressure, (7) and (8) the excess change 
of entropy on mixing a t constant volume calculated 
according to eq. 14 and the observed value, re­
spectively, (9) and (10) the excess change of en­
tropy on mixing a t constant pressure calculated 
according to eq. 14 and the observed value, re­
spectively, and (11) and (12) the excess change of 
free energy on mixing a t constant pressure, cal­
culated and observed, respectively. All values 
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TABLE I 

THE THERMODYNAMIC PROPERTIES OF THE BENZENE-CARBON TETRACHLORIDE SYSTEM 

CCJ4 

.1 

.2 

.3 

.4 

.5 

.0 

.7 

.8 

.9 

AEyW 
H . S . 

+2.9 
+5 .1 
+6 .7 
+7 .5 
+7.8 
+7.5 
+6.4 
+4.4 
+2.7 

AEi/M 
W 

+2.5 
+5.1 
+ 7.0 
+8 .1 
+8 .8 
+8.6 
+7 .6 
+5.7 
+2.9 

A E v " 
obsd . 

+ 10.0 
+ 18.3 
+24.5 
+28.2 
+29.4 
+28.2 
+24.2 
+ 18.0 
+ 10.1 

A E , " 
W 

+3.4 
+6.2 
+7.9 
+9 .1 
+9.6 
+9 .5 
+8.7 
+6.9 
+3.9 

A H 5 " ' 
obsd . 

+ 10.9 
+ 19.4 
+25.4 
+29.0 
+30.2 
+28.9 
+25.3 
+ 19.2 
+ 11.0 

ASH 5 

W 

-0 .01 
- .02 
- .03 
- .03 
- .02 
- .02 
- .02 
- .01 
- .01 

ASvs 

obsd . 

+0.01 
-I- .02 
+ .03 
+ .03 
+ .03 
+ .03 
+ .03 
+ .02 
+ .01 

A S „ * 
W 

-0 .01 
- .02 
- .02 
- .02 
- .02 
- .02 
- .01 
- .01 
- .00 

A S 5 * 
obsd . 

+0.01 
+ .02 
+ .03 
+ .03 
+ .04 
+ .03 
+ .03 
+ .02 
+ .01 

A E 1 * 
W 

+ 8 
+ 12 
+ 14 
+ 16 
+ 16 
+ 14 
+ 13 
+ 9 
+ 5 

A F p * 
obsd . 

+ 7 
+ 13 
+ 16 
+ 19 
+ 2 0 
+ 19 
+ 16 
+ 12 
+ 7 

TABLE II 

THE THERMODYNAMIC PROPERTIES OF THE BENZENE-CYCLOHEXANE SYSTEM 

0.1 
.2 
.3 
.4 
.5 
.6 
.7 
.8 
.9 

XcCl4 

0.1 
.2 
.3 
.4 
.5 
.6 
.7 
.8 
.9 

AEy" 
H . S . 

+ 8 
+ 14 
+ 19 
+ 2 2 
+ 2 3 
+ 2 3 
+ 2 0 
+ 16 
+ 9 

AEv" 
W 

+ 2 9 
+ 5 2 
+ 6 9 
+ 8 2 
+ 8 6 
+ 8 5 
+ 7 8 
+ 6 3 
+ 3 8 

AEv" 
obsd . 

+ 53 
+ 93 
+ 123 
+ 142 
+ 150 
+ 146 
+ 130 
+ 101 
+ 58 

AEvu 
W 

+ 46 
+ 84 
+ 111 
+ 129 
+ 137 
+ 132 
+ 122 
+ 96 
+ 59 

A H , " 
obsd. 

+ 71 
+ 127 
+ 167 
+ 193 
+ 203 
+ 197 
+ 175 
+ 135 
+ 77 

AS7" 
W 

+0.02 
+ .03 
+ .03 
+ .02 

.00 
- .02 
- .02 
- .03 
- .02 

AS Y* 
obsd . 

+0.08 
+ .15 
+ .20 
+ .23 
+ .24 
+ .24 
+ .21 
+ .17 
+ .10 

ASP* 
W 

+0.08 
+ .14 
+ .17 
+ .19 
+ .18 
+ .15 
+ .13 
+ .09 
+ .05 

AS," 
obsd . 

+0.15 
+ .26 
+ .35 
+ .40 
+ .42 
+ .41 
+ .30 
+ .28 
+ .16 

AFp" 
W 

+ 2 2 
+ 4 2 
+ 5 9 
+ 7 3 
+ 8 3 
+87 
+ 8 3 
+ 7 0 
+ 4 3 

AFp" 
obsd . 

+ 2 7 
+ 4 8 
+ 6 3 
+ 7 3 
+ 7 7 
+ 7 5 
+ 6 6 
+ 5 1 
+ 2 9 

TABLE III 

THE THERMODYNAMIC PROPERTIES OF THE CARBON TETRACHLORIDE-CYCLOHEXANE SYSTEM 

AEvM 

H . S . 

+ 1 
+ 2 
+ 3 
+ 4 
+ 4 
+ 4 
+ 3 
+ 3 
+ 2 

AEyM 
W 

+ 10 
+ 19 
+ 2 6 
+ 3 0 
+ 3 2 
+ 3 2 
+ 2 9 
+ 2 3 
+ 14 

AEv" 
obsd . 

+ 9 
+ 15 
+ 2 1 
+ 2 4 
+ 2 5 
+ 2 5 
+ 2 2 
+ 17 
+ 10 

AEp" 
W 

+ 14 
+26 
+ 3 5 
+ 4 1 
+ 4 4 
+ 4 4 
+ 3 9 
+ 3 1 
+ 18 

AHp" 
obsd. 

+ 13 
+ 2 4 
+ 3 2 
+ 3 6 
+ 3 8 
+ 3 7 
+ 3 3 
+ 2 5 
+ 15 

ASy' 
W 

+0.007 

+ .on 
+ .0I4 

+ .014 
+ .OI4 
+ .013 
+ .010 
+ .008 
+ .00Q 

ASvB 

obsd . 

+0.0Og 
+ .017 
+ .022 
+ .026 
+ .02g 
+ .028 
+ .025 
+ .020 
+ -Oil 

ASpS 
W 

+0.02 
+ .03 
+ .04 
+ .05 
+ .05 
+ .05 
+ .05 
+ .04 
+ .02 

ASp' 
obsd . 

+0.03 
+ .05 
+ .06 
+ .07 
+ .07 
+ .07 
+ .06 
+ .05 
+ .03 

AEp* 
W 

+ 9 
+ 18 
+24 
+ 2 8 
+ 2 9 
+ 2 8 
+ 2 5 
+ 2 0 
+ 12 

AFpB 
obsd . 

+ 6 
+ 10 
+ 14 
+ 16 
+ 17 
+ 16 
+ 14 
+ 11 
+ 6 

are molar quantities and are in units of cal. per 
mole or cal. per mole deg. The observed values 
are obtained from the work of Wood with Brusie,23 

Austin24 and Gray25 based on the work of Scat-
chard, Wood and Mochel. For the benzene-car­
bon tetrachloride system, AEV

M calculated here 
is only a little larger than that calculated by the 
Hildebrand-Scatchard equation and is much smaller 
than the observed value. Also AEP

M is smaller 
than ASP

M. Both of the excess entropies are 
negative and smaller than the observed. The 
approximate agreement between the free energies 
is rather surprising. The benzene-cyclohexane 
system has the greatest deviation from ideality of 
the three systems. For this system, AEV

M cal­
culated here is considerably larger than the value 
calculated by the Hildebrand-Scatchard equation 
and lies about midway between this value _and the 
observed value. AEf

 M is smaller than ASP
M but 

is comparable to it. The excess entropies are both 
too small; AS»E (calcd.) has both positive and 
negative values while ASP

E (calcd.) is entirely posi­
tive. Again the agreement between the two free 
energies is striking; here, however, the calculated 
values are greater than those observed for cyclo-

hexane-rich solutions. For the carbon tetra-
chloride-cyclohexane system, all the calculated 
values, except the two entropies, are greater than 
the observed values and considerably improved 
over the Hildebrand-Scatchard equation. Both 
ASV

E and ASP
B are smaller than the observed values 

but are comparable to them. The approach of 
AFP

E (calcd.) to the observed values for each sys­
tem, in contrast to the other quantities, is probably 
due to the cancellation of errors in the integral of 
(dP/bT)v which appears in both the energy and the 
entropy. _ In all three systems, the difference be­
tween AEP

M and AEV
M agrees well with the differ­

ence between the observed quantities, ARP
M and 

AEV
M, which has been calculated by the method of 

Scatchard.27 

The relative importance of the first term of eq. 
4 and 14, and the sum of the remaining terms is ob­
tained by comparing the items of Table IV with 
the corresponding items of Tables I, II and III. 
Table IV gives the changes of the energy and the 
excess changes of the entropies on mixing at con­
stant volume and at constant pressure at half mole 
fraction on the assumption that the first term in 

(27) G. Scatchard, Trans. Faraday Soc, 33, 160 (1937). 
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the eq. 4 and 14 is zero. This assumption requires 
the use of the ari thmetic mean for both a u and bu 
rather than the geometric mean. The values of 
the energy of mixing for both constant volume and 
constant pressure in Table IV range from 70 to 9 0 % 
of the corresponding values in the other tables. 
Thus, it seems t ha t the compression or expansion 
of the pure components largely accounts for the 
energy of mixing. This is not t rue of the entropies 
of mixing, and the value of the first term of eq. 14 
is roughly the same as the sum of the other terms. 

TABLE IV 

VALUES OF THE CHANGE OF ENERGY AND ENTROPY AT HALF 
MOLE FRACTION USING THE ARITHMETIC MEAN 

CHi-CCU C«H,-C.Hn C I H I J - C C U 

AEV
M 8 .0 71 23 

AEP
M 8.7 122 34 

A g / -0 .04 - 0 . 1 1 -0 .04 
A S / - .03 + .07 .00 

Partial Molal Quantities.—Expressions for the 
partial molal energies of mixing and the partial 
molal excess entropies of mixing are readily ob­
tained from eq. 4 and 14. These equations are 

ARM= *28 ^l VJ ( 2 ? " _ ElL _ ?!i \ -L (OU. _ aJL\ JL. 
1 F2 VF1F2 F1

2 F2V VFi FiV 

V L \bV/T,P,m ^ V i ) W r 1 P 1 W 

xt'(^) I (17) 

and 

A ? E - xl¥iVS C^n _ &!i _ fe\ , fbu _ 6iA 
1 " " F* VF1F2 F,2 F 2 V + V T , F V + 

*LhjL*> fft. ( ^ ) + 2^2 ( ^ ) + 
V L VSKZr1P1M8 VdF/r.p.Bi 

Although the free diffusion of homogeneous sub­
stances in liquids has been studied extensively with 
the Rayleigh method,1 there is little published work 
on heterogeneous systems. Baldwin,2 Dunlop3 

and Akeley4 have shown tha t moments of the re­
fractive index gradient curves are useful for meas­
uring average diffusion constants of a hetero­
geneous system. Baldwin has named Dim and 

(1) (a) L. G. Longsworth, T H I S JOURNAL, 75, 5705 (1953); (b) 
J. M. Creeth, ibid., 77, 6428 (1955). 

(2) R. L. Baldwin, P. J. Dunlop and L. J. Gosting, ibid., 77, 5235 
(1955). 

(3) P. J. Dunlop and L. J. Gosting, ibid., 77, 5238 (1955). 
(4) D. F. Akeley and L. J. Gosting, ibid., 75, 5685 (1953). 

"(!fOr,J-"T+¥<''-r'> <18) 

The equations for the second component are ob­
tained by interchange of subscripts. Equation 
17 reduces to t ha t given by Simons and Dunlap 
with the assumption tha t the a's are independent of 
the volume. 

Wood28 has a t t empted to correlate the excess 
entropy of mixing a t infinite dilution of one com­
ponent in the other with the difference between the 
entropy of vaporization of the component to an 
ideal gas a t an arbi t rary concentration and tha t of 
argon to the same concentration in the gas phase. 
Such correlation could only exist if the solvent was 
considered to be merely an inert diluent, bu t the 
effect of the solvent was shown to be very marked. 
Equation 18 reduces to 

ASE = -b? - 522J7'" - *JL 4- Vi" ~ P'" f^hA 
1 Vi" (F2O)2 Vi" V2" \Z>V/T,P,m 

for the partial molar excess entropy of the first 
component a t infinite dilution in the second com­
ponent. He re V\° is the partial volume of the 
first component a t infinite dilution. The effect 
of the solvent and the interaction between the un­
like molecules is quite apparent . Even under the 
stringent conditions t h a t the molar volumes are 
identical and tha t the volume of the solution is ad­
ditive in the volume of the components, the three 
terms W V, b»/ V0 and bn/ 7° still appear. Only 
under the additional condition tha t bn be zero 
would the partial molar excess entropy of the solute 
be dependent upon its properties alone. 

(28) S. E. Wood, J. Chem. Phys., 15, 358 (1947). 
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D2tm the reduced second and fourth moments, 
respectively. 

Dhm s ^ 2 (2) 

In a non-interacting (Aj = 0; i ^ j) heterogeneous 
system in which all the solutes have the same 
refractive index increment we have 

D'u = ~D> = S x{Dh (3) 

where X-, is the weight fraction of component i. 
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A method has been devised for calculating reduced second and fourth moments of gradient curves obtained in diffusion 
experiments by means of Rayleigh fringes. Theoretical calculations and experimental data indicate that the reduced 
second moment can be measured with an accuracy of about 0.1%. 


